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Micchelli [1] presented the following problem: Let X, Y, Z be linear
spaces over K e {R, C}. Let ¥, Z be endowed with norms, both denoted by
(I-1. Let

LX->Y
UX-Z
be linear mappings. 7 is the so-called “information mapping” and U the

mapping we want to “recover.” Furthermore, a set K< X and an infor-
mation error ¢ >0 are given. An algorithm is a mapping

A:B(IK, ] - Z.
Here
B(IK,e]:= {yeY; |Ix—y| <efor some xeK}.
The error of an algorithm A is defined as

E (K, &) :=sup{|Ux— Ay|; | Ix —y|| <&, xe K}.

An algorithm A satisfying
E=E(K ¢):=infE (K, ¢)
A

is called an optimal algorithm,

We are making the restriction Z=K =R and assume K to be convex
and balanced, e.g., xe K implies —xe K. We assume E(K, ¢) < o0, since
otherwise everything is trivial. We write sup M (inf M) for the supremum
(infinum) of a set M= R.

Our result is given in the following theorem:
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THEOREM. There is always a linear optimal algorithm. There is a linear
and continuous algorithm, if one of the following conditions hold:

(a) £>0,
(b) IK is a neighborhood of O and there is a linear and continuous
algorithm L with E (K, g} < 0. ‘

There is only one linear optimal algorithm, iff IK is absorbing and for all
yevy,

lim 2A) =20y, 244)—2.0)

A0, A oy A ’

(1)

with

?(y):= sup UI™'(B(y, e]) N K).
Case (a) was proved by Micchelli [1] and Micchelli and Rivlin [2]. Also
the condition for uniqueness has been given in the same paper. For com-

pleteness we give a complete and aliernative proof of the whole theorem.
We use the following notations:

Y*:= {L;L: Y- Rlinear},

Y := {L; L: Y - R continuous and linear },
B(y,e]:= {xe Y Ix—yl<e},
H(y):= Ul '(B(y,e])nK}.

It is clear that H (y) = iff y ¢ B(IK, £]. Thus @, is defined on the convex
set B(IK, ¢]. @, is a concave function. As in [2] we define

e(K, g) := sup{|Ux|; ||Ix]| <& x€ K}
= &,(0).
For later use we remark
&, (—y)=sup{Ux; Ixe B(y,e], xe K}
= —inf{Ux; Ixe B(y,¢], xe K}
= —inf H(y)

since K is balanced.
Thus

H(y)=[—P(—-y), P(y)]
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H.(y) is bounded, since we assume E(K, ¢) < oo. In [2] it is proved that
e(K, e)=E(K, ¢). (2)
We now give the basic lemma:
LemMma 1. Le Y* is optimal iff
L(y)2®.(y)—2.0) (3)

for all ye B(IK, ¢].
Proof. (1) Let Le Y* be optimal, but
D.(y)—L(y)>P.(0)=e(K, ¢).
We get
E(K,e)=E (K, e)2D.(y)—L(y)>e(K,¢).
This is a contradiction to (2).
(2) Suppose (3) holds. Then for all ye B(IK, ¢]

P (y)—L(y)<P(0)=e(K, &)

Since K is balanced we get H,(y)= —H,(—y) and
inf(H,(y))= —sup(H,(—y))= —®,(—).
Thus
L(y)—inf(H,(y))=L(y)}+ @.(—y)

=@ (—y)—L(—y)
£, (0)=¢e(K, ).

We now have
IL(y)—zl<e(K, ¢)
for all ze H,(y). Thus
E,(K,e)<e(K, e)=E(K, ¢). QE.D.
Now we have to find all Le Y* with

L(y)ZD(y)—2.(0)
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for all ye B(IK, ¢]. But the existence of such a Le Y* is a consequence of
the following lemma.

LEMMA 2. Let E be a linear R-space, U S E a convex and balanced set.
Then for any concave functional ¢: U— R, p(0)=0, there is a L e E* with
L(y)z o(y)

for all ye U.

Proof. Let F be the linear subspace spanned by U. Since U is balanced
and convex, U is absorbing in F. Since ¢ is concave it is differentiable into
any direction y€F, e.g,,

A
h(y)= lim ——q)(:l )_ sup q)(,y). (4)
A0, A i-0, A

is well defined in F. —h is a sublinear functional on F and by the
Hahn-Banach theorem there is a functional I € F* with

L(y)< —h(y)< —o(p)

for all ye U.

Thus there is a functional L € E* with the desired property.

It is now proved that there is always a linear optimal algorithm. A closer
look to the proof of Lemma 2 shows that condition (1) from the theorem is
necessary and sufficient for the uniqueness of the optimal linear algorithm.
In this case the sublinear functional 4 in (4) is the optimal algorithm in Y*.

By (3) in Lemma 1 it is clear that any linear optimal algorithm is boun-
ded, if @, is bounded in a neighborhood of 0. We examine the two cases,
(a) and (b), of the theorem:

(a) e&>0: Now B(IK,¢] is a neighborhood of 0. Let |yl|<e,
[Ix—yl <e, xe K

Then
2 [HGx)) = H(x)] <2

Thus
HGx)I <e.

We have now
|UGx)| < 2,(0).

This implies
®,(y)<29,(0)=2e(K, ¢)
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for all | y| <e. Since for ||v|| <s
=&, y)=inf H(—y)<D(—y)<2e(K ¢),

@, is bounded in B(0, ¢].

(b) &=0: Now we can assume that /K is a neighborhood of 0 and that
there is an Lye Y with E, (K, 0) < co. For all ye IK we have

(@0 <IP(¥) = Lo(y)] + Lo y)]
SEL (K 0)+ |Lo(p)l.

Thus @, is bounded in a neighborhood of 0.
The proof of the theorem is now complete.

Finally we remark that the case I{ = C can be reduced to the case K = R,
if K is C-balanced, e.g.,

A} €1, xe Kimplies Ax e K.

This is done by looking at all spaces as R-spaces and exchanging Re U for
U. If Le Y¥ is an optimal algorithm of this new problem, then

Le(y)=L(y)—iL(iy)

is an optimal algorithm of the original probiem.
This can be seen in the following way: Since K is C-balanced and L is
C-linear we get

e(K, ¢) =sup{|Ux|; xe K, |Ix]| <&}
=sup{Re Ux; xe K, || Ix| <&}
=egr(K, €)
= Eg(K, ¢)
=sup{|Ly—Re Ux|; xeK, ||Ix—y|| <&}
=sup{|Re Le(y)—Re Ux|; xe K, ||Ix—y| <&}
=sup{|Le(y)— Uxl;xeK, |Ix—y| <&}
=E, (K ¢)

Here the suffix R indicates that eg(K, &) and E (K, ¢) are the errors of the
real problem. Since

e(K, e)< E(K, ¢)

(see [2]) we see that L. is an optimal algorithm. L. is continuous iff L is
| c p g c
continuous.
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