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Micchelli [1] presented the following problem: Let X, Y, Z be linear
spaces over II{ E {!R, iC}. Let Y, Z be endowed with norms, both denoted by
11'11. Let

I:X~ Y

U:X~Z

be linear mappings. I is the so-called "information mapping" and U the
mapping we want to "recover." Furthermore, a set K ~ X and an infor
mation error e~ 0 are given. An algorithm is a mapping

A: B(IK, e] ~ Z.

Here

B(IK,e]:= {YE Y; IIIx-yll ~efor somexEK}.

The error of an algorithm A is defined as

EA(K, e):= sup{IIUx-Ayll; IIIx- yll ~e, xEK}.

An algorithm A o satisfying

is called an optimal algorithm.

We are making the restriction Z = II{ =!R and assume K to be convex
and balanced, e.g., x E K implies - x E K. We assume E(K, e) < 00, since
otherwise everything is trivial. We write sup M (inf M) for the supremum
(infinum) of a set M ~ !R.

Our result is given in the following theorem:
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THEOREM. There is always a linear optimal algorithm. There is a linear
and continuous algorithm, if one of the following conditions hold:

(a) e>O,
(b) IK is a neighborhood of 0 and there is a linear and continuous

algorithm L with EL(K, e) < 00.

There is only one linear optimal algorithm, iff IK is absorbing and for all
yeY,

(1 )

with

4I.(y):= sup U(l-l(B(y, eJ)f1K).

Case (a) was proved by Micchelli [IJ and Micchelli and Rivlin [2]. Also
the condition for uniqueness has been given in the same paper. For com
pleteness we give a complete and alternative proof of the whole theorem.

We use the following notations:

Y* := {L; L: Y --+ III linear},

Y' := {L; L: Y --+ III continuous and linear},

B(y, eJ:= {XE Y; Ilx- yll ~e},
H.(y):= U(l-l(B(y, eJ)f1 K}.

It is clear that H.(y) = 0 iff y ¢ B(lK, eJ. Thus 41. is defined on the convex
set B(lK, e]. 41. is a concave function. As in [2J we define

e(K, e):= sup{IUxl; II/xii ~e, xEK}

=41.(0).

For later use we remark

41.( -y) = sup{ Ux; /xe B(y, eJ, xeK}

= -inf{ Ux; Ix e B(y, eJ, x e K}

= -inf H.(y)

since K is balanced.
Thus
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H.(y) is b.ounded, since we assume E(K, c) < 00. In [2] it is proved that

e(K, c) =E(K, c).

We now give the basic lemma:

LEMMA 1. L E y* is optimal iff

L(y) ~ (j).(y) - (j).(0)

for all y E B(lK, c]'

Proof (1) Let L E y* be optimal, but

(j) .(y) - L(y) > (j).(0) = e(K, c).

We get

E(K, c) = EL(K, c) ~ (j).(y) - L(y) > e(K, c).

This is a contradiction to (2).

(2) Suppose (3) holds. Then for all y E B(lK, c]

(j).(y) - L(y) ~ (j).(0) = e(K, c).

Since Kis balanced we get H.(y)= -H.(-y) and

inf(H.(y)) = -sup(H.( - y)) = -(j).( - y).

Thus

L(y) - inf(H.(y)) =L(y) + (j).( - y)

=(j).( -y) - L( -y)

~ (j).(0) =e(K, c).

We now have

IL(y)-zl ~e(K, c)

for all zEH.(y). Thus

EL(K, c) ~ e(K, c) = E(K, c).

Now we have to find all L E y* with

(2)

(3 )

Q.E.D.
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for all y EB(IK, e]. But the existence of such aLE y* is a consequence of
the following lemma.

LEMMA 2. Let E be a linear IR-space, U ~ E a convex and balanced set.
Then for any concave functional <p: U -. IR, <p(0) = 0, there is aLE E* with

L(y) ~ <p(y)

for all yE U.

Proof Let F be the linear subspace spanned by U. Since U is balanced
and convex, U is absorbing in F. Since <p is concave it is differentiable into
any direction y EF, e.g.,

h(y)= lim <p(~y) = sup <p(~y). (4)
).-0+ Ii. ).-0+ Ii.

is well defined in F. - h is a sublinear functional on F and by the
Hahn-Banach theorem there is a functional l EF* with

for all y E U.
Thus there is a functional L EE* with the desired property.
It is now proved that there is always a linear optimal algorithm. A closer

look to the proof of Lemma 2 shows that condition (1) from the theorem is
necessary and sufficient for the uniqueness of the optimal linear algorithm.
In this case the sublinear functional h in (4) is the optimal algorithm in Y*.

By (3) in Lemma I it is clear that any linear optimal algorithm is boun
ded, if t:P, is bounded in a neighborhood of O. We examine the two cases,
(a) and (b), of the theorem:

(a) e>O: Now B(IK, e] is a neighborhood of O. Let llyll ~e,
II/x- yll ~e, XEK.

Then
2 11/(~x)11 = 11/(x)11 ~ 2e.

Thus

11/(~x)11 ~ e.

We have now

This implies
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for all Ilyll ~e. Since for IIvll ~e

-tP,~y) = inf H,( - y) ~ tP,( - y) ~ 2e(K, e),

171

tP, is bounded in B(O, e].

(b) e = 0: Now we can assume that IK is a neighborhood of 0 and that
there is an LoE Y' with ELo(K,O)< 00. For all yEIK we have

ItPr.(y)1 ~ ItPJy)-Lo(y)1 + ILo(y)1

~ EdK, 0) + ILo(y)l.

Thus (/J, is bounded in a neighborhood of O.
The proof of the theorem is now complete.

Finally we remark that the case IK = iC can be reduced to the case IK = IR,
if K is iC-balanced, e.g.,

1).1 ~ 1, x E K implies hE K.

This is done by looking at all spaces as IR-spaces and exchanging Re U for
U. If L E Y~ is an optimal algorithm of this new problem, then

Ldy) = L(y) - iL(iy)

is an optimal algorithm of the original problem.
This can be seen in the following way: Since K is iC-balanced and L c is

iC-linear we get

e(K, e) = sup{ IUxl; x E K, IIIxl1 ~ e}

= sup{ Re Ux; x E K, IIIxl1 ~ e}

=e[R(K,e)

=E[R(K,e)

=sup{ILy-Re Uxl;xEK, IIIx-yll ~e}

=sup{IReLdy)-Re UXI;XEK, IIIx-yll ~e}

=sup{ILdy)-Uxl;XEK, IIIx-yll ~e}

= ELC(K, e).

Here the suffix IR indicates that e[R(K, e) and E[R(K, e) are the errors of the
real problem. Since

e(K, e)~E(K, e)

(see [2]) we see that Lc is an optimal algorithm. Lc is continuous iff L is
continuous.
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