JOURNAL OF APPROXIMATION THEORY 44, 167-172 (1985)

Optimal Recovery by Linear Functionals

RENÉ SCHARLACH

Mathematisch-Geographische Fakultät, Katholische Universität Eichstätt, 8078 Eichstätt, West Germany

> Communicated by Charles A. Micchelli Received April 12, 1984; revised June 14, 1984

Micchelli [1] presented the following problem: Let X, Y, Z be linear spaces over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Let Y, Z be endowed with norms, both denoted by $\|\cdot\|$. Let

 $I: X \to Y$ $U: X \to Z$

be linear mappings. I is the so-called "information mapping" and U the mapping we want to "recover." Furthermore, a set $K \subseteq X$ and an information error $\varepsilon \ge 0$ are given. An algorithm is a mapping

$$A: B(IK, \varepsilon] \to Z.$$

Here

$$B(IK, \varepsilon] := \{ y \in Y; \|Ix - y\| \le \varepsilon \text{ for some } x \in K \}.$$

The error of an algorithm A is defined as

$$E_{\mathcal{A}}(K,\varepsilon) := \sup\{\|Ux - Ay\|; \|Ix - y\| \le \varepsilon, x \in K\}.$$

An algorithm A_0 satisfying

$$E_{A_0} = E(K, \varepsilon) := \inf_A E_A(K, \varepsilon)$$

is called an optimal algorithm.

We are making the restriction $Z = \mathbb{K} = \mathbb{R}$ and assume K to be convex and balanced, e.g., $x \in K$ implies $-x \in K$. We assume $E(K, \varepsilon) < \infty$, since otherwise everything is trivial. We write sup M (inf M) for the supremum (infinum) of a set $M \subseteq \mathbb{R}$.

Our result is given in the following theorem:

167

RENÉ SCHARLACH

THEOREM. There is always a linear optimal algorithm. There is a linear and continuous algorithm, if one of the following conditions hold:

(a) $\varepsilon > 0$,

(b) IK is a neighborhood of 0 and there is a linear and continuous algorithm L with $E_L(K, \varepsilon) < \infty$.

There is only one linear optimal algorithm, iff IK is absorbing and for all $y \in Y$,

$$\lim_{\lambda \to 0_{+}} \frac{\boldsymbol{\Phi}_{\varepsilon}(\lambda y) - \boldsymbol{\Phi}_{\varepsilon}(0)}{\lambda} = \lim_{\lambda \to 0_{-}} \frac{\boldsymbol{\Phi}_{\varepsilon}(\lambda y) - \boldsymbol{\Phi}_{\varepsilon}(0)}{\lambda}, \quad (1)$$

with

$$\boldsymbol{\varPhi}_{\varepsilon}(\boldsymbol{y}) := \sup U(I^{-1}(\boldsymbol{B}(\boldsymbol{y},\varepsilon]) \cap \boldsymbol{K}).$$

Case (a) was proved by Micchelli [1] and Micchelli and Rivlin [2]. Also the condition for uniqueness has been given in the same paper. For completeness we give a complete and alternative proof of the whole theorem.

We use the following notations:

 $Y^* := \{L; L: Y \to \mathbb{R} \text{ linear}\},\$ $Y' := \{L; L: Y \to \mathbb{R} \text{ continuous and linear}\},\$ $B(y, \varepsilon] := \{x \in Y; ||x - y|| \le \varepsilon\},\$ $H_{\varepsilon}(y) := U(I^{-1}(B(y, \varepsilon]) \cap K\}.$

It is clear that $H_{\varepsilon}(y) = \emptyset$ iff $y \notin B(IK, \varepsilon]$. Thus Φ_{ε} is defined on the convex set $B(IK, \varepsilon]$. Φ_{ε} is a concave function. As in [2] we define

$$e(K,\varepsilon) := \sup\{|Ux|; ||Ix|| \le \varepsilon, x \in K\}$$
$$= \Phi_{\varepsilon}(0).$$

For later use we remark

$$\Phi_{\varepsilon}(-y) = \sup\{Ux; Ix \in B(y, \varepsilon], x \in K\}$$
$$= -\inf\{Ux; Ix \in B(y, \varepsilon], x \in K\}$$
$$= -\inf H_{\varepsilon}(y)$$

since K is balanced.

Thus

$$\overline{H_{\varepsilon}(y)} = [-\Phi_{\varepsilon}(-y), \Phi_{\varepsilon}(y)].$$

 $H_{\varepsilon}(y)$ is bounded, since we assume $E(K, \varepsilon) < \infty$. In [2] it is proved that

$$e(K,\varepsilon) = E(K,\varepsilon).$$
⁽²⁾

We now give the basic lemma:

LEMMA 1. $L \in Y^*$ is optimal iff

$$L(y) \ge \Phi_{\varepsilon}(y) - \Phi_{\varepsilon}(0) \tag{3}$$

for all $y \in B(IK, \varepsilon]$.

Proof. (1) Let $L \in Y^*$ be optimal, but

$$\boldsymbol{\Phi}_{\varepsilon}(\boldsymbol{y}) - L(\boldsymbol{y}) > \boldsymbol{\Phi}_{\varepsilon}(0) = e(\boldsymbol{K}, \varepsilon).$$

We get

$$E(K, \varepsilon) = E_L(K, \varepsilon) \ge \Phi_{\varepsilon}(y) - L(y) > e(K, \varepsilon).$$

This is a contradiction to (2).

(2) Suppose (3) holds. Then for all $y \in B(IK, \varepsilon]$

$$\boldsymbol{\Phi}_{\varepsilon}(\boldsymbol{y}) - L(\boldsymbol{y}) \leqslant \boldsymbol{\Phi}_{\varepsilon}(0) = e(\boldsymbol{K}, \varepsilon).$$

Since K is balanced we get $H_{\varepsilon}(y) = -H_{\varepsilon}(-y)$ and

$$\inf(H_{\varepsilon}(y)) = -\sup(H_{\varepsilon}(-y)) = -\Phi_{\varepsilon}(-y)$$

Thus

$$L(y) - \inf(H_{\varepsilon}(y)) = L(y) + \Phi_{\varepsilon}(-y)$$
$$= \Phi_{\varepsilon}(-y) - L(-y)$$
$$\leq \Phi_{\varepsilon}(0) = e(K, \varepsilon).$$

We now have

$$|L(y)-z|\leqslant e(K,\varepsilon)$$

for all $z \in H_{\varepsilon}(y)$. Thus

$$E_L(K, \varepsilon) \leq e(K, \varepsilon) = E(K, \varepsilon).$$
 Q.E.D.

Now we have to find all $L \in Y^*$ with

$$L(y) \ge \boldsymbol{\Phi}_{\boldsymbol{\epsilon}}(y) - \boldsymbol{\Phi}_{\boldsymbol{\epsilon}}(0)$$

for all $y \in B(IK, \varepsilon]$. But the existence of such a $L \in Y^*$ is a consequence of the following lemma.

LEMMA 2. Let E be a linear \mathbb{R} -space, $U \subseteq E$ a convex and balanced set. Then for any concave functional $\varphi: U \to \mathbb{R}$, $\varphi(0) = 0$, there is a $L \in E^*$ with

$$L(y) \ge \varphi(y)$$

for all $y \in U$.

Proof. Let F be the linear subspace spanned by U. Since U is balanced and convex, U is absorbing in F. Since φ is concave it is differentiable into any direction $y \in F$, e.g.,

$$h(y) = \lim_{\lambda \to 0_+} \frac{\varphi(\lambda y)}{\lambda} = \sup_{\lambda \to 0_+} \frac{\varphi(\lambda y)}{\lambda}.$$
 (4)

is well defined in F. -h is a sublinear functional on F and by the Hahn-Banach theorem there is a functional $\tilde{L} \in F^*$ with

$$\tilde{L}(y) \leq -h(y) \leq -\varphi(y)$$

for all $y \in U$.

Thus there is a functional $L \in E^*$ with the desired property.

It is now proved that there is always a linear optimal algorithm. A closer look to the proof of Lemma 2 shows that condition (1) from the theorem is necessary and sufficient for the uniqueness of the optimal linear algorithm. In this case the sublinear functional h in (4) is the optimal algorithm in Y^* .

By (3) in Lemma 1 it is clear that any linear optimal algorithm is bounded, if Φ_{ε} is bounded in a neighborhood of 0. We examine the two cases, (a) and (b), of the theorem:

(a) $\varepsilon > 0$: Now $B(IK, \varepsilon]$ is a neighborhood of 0. Let $||y|| \le \varepsilon$, $||Ix - y|| \le \varepsilon$, $x \in K$.

Then

$$2 \|I(\frac{1}{2}x)\| = \|I(x)\| \le 2\varepsilon.$$

Thus

 $\|I(\frac{1}{2}x)\| \leq \varepsilon.$

We have now

 $|U(\frac{1}{2}x)| \leq \Phi_{\varepsilon}(0).$

This implies

 $\boldsymbol{\Phi}_{\varepsilon}(\boldsymbol{y}) \leq 2\boldsymbol{\Phi}_{\varepsilon}(\boldsymbol{0}) = 2\boldsymbol{e}(\boldsymbol{K},\varepsilon)$

for all $||y|| \leq \varepsilon$. Since for $||y|| \leq \varepsilon$

$$-\boldsymbol{\Phi}_{\varepsilon}(\boldsymbol{y}) = \inf H_{\varepsilon}(-\boldsymbol{y}) \leqslant \boldsymbol{\Phi}_{\varepsilon}(-\boldsymbol{y}) \leqslant 2\boldsymbol{e}(\boldsymbol{K}, \varepsilon),$$

 Φ_{ε} is bounded in $B(0, \varepsilon]$.

(b) $\varepsilon = 0$: Now we can assume that *IK* is a neighborhood of 0 and that there is an $L_0 \in Y'$ with $E_{L_0}(K, 0) < \infty$. For all $y \in IK$ we have

$$|\Phi_{\varepsilon}(y)| \leq |\Phi_{\varepsilon}(y) - L_0(y)| + |L_0(y)|$$
$$\leq E_{L_0}(K, 0) + |L_0(y)|.$$

Thus Φ_{ε} is bounded in a neighborhood of 0.

The proof of the theorem is now complete.

Finally we remark that the case $\mathbb{K} = \mathbb{C}$ can be reduced to the case $\mathbb{K} = \mathbb{R}$, if K is \mathbb{C} -balanced, e.g.,

$$|\lambda| \leq 1, x \in K$$
 implies $\lambda x \in K$.

This is done by looking at all spaces as \mathbb{R} -spaces and exchanging Re U for U. If $L \in Y_{\mathbb{R}}^*$ is an optimal algorithm of this new problem, then

$$L_{\mathbb{C}}(y) = L(y) - iL(iy)$$

is an optimal algorithm of the original problem.

This can be seen in the following way: Since K is \mathbb{C} -balanced and $L_{\mathbb{C}}$ is \mathbb{C} -linear we get

$$e(K, \varepsilon) = \sup\{|Ux|; x \in K, ||Ix|| \le \varepsilon\}$$

= $\sup\{\operatorname{Re} Ux; x \in K, ||Ix|| \le \varepsilon\}$
= $e_{\mathbb{R}}(K, \varepsilon)$
= $E_{\mathbb{R}}(K, \varepsilon)$
= $\sup\{|Ly - \operatorname{Re} Ux|; x \in K, ||Ix - y|| \le \varepsilon\}$
= $\sup\{|\operatorname{Re} L_{\mathbb{C}}(y) - \operatorname{Re} Ux|; x \in K, ||Ix - y|| \le \varepsilon\}$
= $\sup\{|L_{\mathbb{C}}(y) - Ux|; x \in K, ||Ix - y|| \le \varepsilon\}$
= $E_{L_{\mathbb{C}}}(K, \varepsilon).$

Here the suffix \mathbb{R} indicates that $e_{\mathbb{R}}(K, \varepsilon)$ and $E_{\mathbb{R}}(K, \varepsilon)$ are the errors of the real problem. Since

$$e(K,\varepsilon) \leqslant E(K,\varepsilon)$$

(see [2]) we see that $L_{\mathbb{C}}$ is an optimal algorithm. $L_{\mathbb{C}}$ is continuous iff L is continuous.

RENÉ SCHARLACH

References

- 1. C. A. MICCHELLI, "Optimal Estimation of Linear Functionals," IBM Research Report 5729, 1975.
- 2. C. A. MICCHELLI AND T. J. RIVLIN, A survey of optimal recovery, in "Optimal Estimation in Approximation Theory". Plenum, New York, 1976.